Sunday, July 21, 2013

// // Leave a Comment

Practice Questions-1- Trigonometric Ratios


Hey. Was up??? How are all of you doing?? Liked our previous posts?? Its time to get mainstream and jump to the world of studies.. In this post I will be providing a couple of problems for class XI mathematics. Hope you find it interesting...




High Order Thinking Questions(HOTS)

1. If cos A= 12/13, cos B= 3/5, cos C= 63/65, and A,B,C are in the first quadrant, then cos(A+B+C) is:
(A) 1         (B)2          (C) 3       (D) 0

2. If 3sinθ + 4cosθ = 5, then the value of 4sinθ- 3cosθ is:

(A) 0         (B)5          (C) 1      (D) None of these

3. If tan(x/2)= cosecx - sinx, then Tan(x/2) is equal to:

(A) 2-√5    (B) √5 - 2    (C) (2+√5)   (D) 9+4√5

4. If A + B + C= 180, then sin 2A + sin 2B + sin 2C = 
(A) 4 sinA cosB sinC
(B) 4 sinA sinB sinC
(C) 4 cosA sinB sinC
(D) 4 sinA sinB cosC

5.  If A + B + C= 180, then tanA + tanB + tanC =

(A) tanA tanB tanC
(B) 1 + tanA tanB tanC
(C) -1 + tanA tanB tanC
(D) None of these

6. If cos A = 3/4, then 32sin A/2 sin 5A/2 is equal to:

(A) 7         (B) 8         (C) 11        (D) None of these


7. If x= cosA/1-sinA, then 1/x is equal to:

(A) secA+tanA       (B)tanA-secA     (C) 1         (D) cosA/ 1+sinA

8. The value of 3+cot76°cot16°/ cot76°+cot16° is:

(A) cot44°     (B) tan44°       (C) tan2°     (D) cot46°

9. Find the value of tan63°- cot63°:

(A) 2/√5+110-2√5
(B) 2/√5+110+2√5
(C) √5- 1/410-2√5
(D) None of these

10. tanA+ cotB/ tanB+ cotA is equal to:

(A) tanB tanA
(B) tanB cotA
(C) tanA cotB
(D) cotA cotB



Answer Key

1. (D)
2. (A)
3. (B)
4. (B)
5. (A)
6. (C)
7. (D)
8. (A)
9. (A)
10. (C)

Do come back to us in case of any mistakes or doubts. Hope you enjoyed working on some tricky sums. We will soon post the answer script for these 10 sums. Keep waiting and visiting for more.....

0 comments:

Post a Comment


Your comments are always appreciated.
Note:
1. Please do not include links in comments or it will be removed later.
2. Please do not spam because they will be deleted immediately upon our notice.
Regards,
The Sneeze